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Abstract

IMPORTANCE As currently used, microperimetry is a burdensome clinical testing modality for
testing retinal sensitivity requiring long testing times and trained technicians.

OBJECTIVE To create a deep-learning network that could directly estimate function from structure
de novo to provide an en face high-resolution map of estimated retinal sensitivity.

DESIGN, SETTING, AND PARTICIPANTS A cross-sectional imaging study using data collected
between January 1, 2016, and November 30, 2017, from the Natural History Observation and Registry
of macular telangiectasia type 2 (MacTel) evaluated 38 participants with confirmed MacTel from
2 centers.

MAIN OUTCOMES AND MEASURES Mean absolute error of estimated compared with observed
retinal sensitivity. Observed retinal sensitivity was obtained with fundus-controlled perimetry
(microperimetry). Estimates of retinal sensitivity were made with deep-learning models that learned
on superpositions of high-resolution optical coherence tomography (OCT) scans and microperimetry
results. Those predictions were used to create high-density en face sensitivity maps of the macula.
Training, validation, and test sets were segregated at the patient level.

RESULTS A total of 2499 microperimetry sensitivities were mapped onto 1708 OCT B-scans from 63
eyes of 38 patients (mean [SD] age, 74.3 [9.7] years; 15 men [39.5%]). The numbers of examples for
our algorithm were 67 899 (103 053 after data augmentation) for training, 1695 for validation, and
1212 for testing. Mean absolute error results were 4.51 dB (95% CI, 4.36-4.65 dB) when using linear
regression and 3.66 dB (95% CI, 3.53-3.78 dB) when using the LeNet model. Using a 49.9 million–
variable deep-learning model, a mean absolute error of 3.36 dB (95% CI, 3.25-3.48 dB) of retinal
sensitivity for validation and test was achieved. Correlation showed a high degree of agreement
(Pearson correlation r = 0.78). By paired Wilcoxon rank sum test, our model significantly
outperformed these 2 baseline models (P < .001).

CONCLUSIONS AND RELEVANCE High-resolution en face maps of estimated retinal sensitivities
were created in eyes with MacTel. The maps were of unequalled resolution compared with
microperimetry and were able to correctly delineate functionally healthy and impaired retina. This
model may be useful to monitor structural and functional disease progression and has potential as an
objective surrogate outcome measure in investigational trials.
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Key Points
Question Can the probability of retinal

sensitivity be estimated from retinal

structure seen on commonly used

clinical scans (eg, optical coherence

tomography) in a retinal disease with a

well-defined functional deficit

manifesting as a focal blind spot?

Findings In this cross-sectional study of

2499 microperimetry sensitivities from

63 eyes of 38 patients, deep-learning

algorithms estimated retinal sensitivity

from optical coherence tomographic

scans with a mean absolute error of

3.36 dB.

Meaning Deep-learning algorithms in

this study reliably estimated the

outcomes of functional testing with

microperimetry, based on optical

coherence tomographic scans alone,

potentially widening the pool of

surrogate markers for vision in clinical

practice and therapeutic trials.
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Introduction

A major impediment to the development of novel interventions for rare macular diseases is the lack
of sensitive biomarkers that can be used as surrogate clinical trial end points. Particularly when the
disease progression is slow, surrogate markers are necessary to overcome the need for large sample
sizes and long follow-up duration, which increases the cost and burden of clinical trials and decreases
the rate at which new therapeutic interventions can be evaluated. Visual acuity remains a poor
functional end point for many macular diseases because the central fovea may be unaffected until
late stages of the disease. Paradigmatic for such a disease course is macular telangiectasia type 2
(MacTel), a neurodegenerative disease in which the parafoveal region becomes disproportionately
affected compared with the central fovea.1

Fundus-controlled perimetry (ie, microperimetry) has the potential to overcome some of these
limitations by projecting a localized visual stimulus directly onto exact positions of the patient’s
retina. Microperimetry tests visual function outside the central fovea, and thus is better suited for
monitoring progression of extrafoveal vision loss, such as in MacTel.2,3 Microperimetry can be
challenging because of the test duration and the requirement of good fixation and experienced
examiners. Despite these challenges, high test-retest reliability has been reported after adequate
training of patients and examiners.4-6 Most acquisition protocols are limited to fewer than 50 spots
as a practical compromise between the tolerable test time and the depth and quality of the data.
Therefore, subtle losses of sensitivity between the testing areas may be missed. In a clinical trial, the
data contained in those areas might make the difference between significant changes of a
therapeutic intervention for a slowly progressive disease and a failed treatment trial.

Optical coherence tomography (OCT) is a widely available noninvasive imaging modality
capable of providing dense volumetric imaging of the retinal microstructures. Since the advent of
OCT, attempts have been made to identify structures on OCT scans that correlate with measured
retinal sensitivities in microperimetry. In a conventional structure-function correlation approach, the
retinal structure of interest is selected a priori by the researchers, measured, and correlated with the
retinal sensitivity at this location.7 With this approach, a correlation of ellipsoid zone loss on OCT with
microperimetry data has been found.8,9 The phase 2 clinical trial of ciliary neurotrophic factor for
MacTel was unique for ocular disease in that the US Food and Drug Administration agreed that visual
acuity would not be the primary outcome.10 Ellipsoid zone loss on OCT was the primary outcome,
and functional markers, such as visual acuity, microperimetry, and reading speed, were secondary
outcomes. Structures other than the ellipsoid zone may be equally or more suitable as a surrogate
measure for retinal function and those structures may vary between diseases. In addition, high-
resolution maps of estimated perimetry may provide a functionally more sensitive surrogate end
point measure.

Deep learning is a recent advance in artificial intelligence and computer vision in which many
layers of convolutional neural networks are stacked to perform end-to-end data-driven learning.
Translation of deep-learning tasks into ophthalmic OCT imaging has been mainly limited to
classification and segmentation.11-19 We sought to create a deep-learning network that estimates
function from structure de novo using the OCT and microperimetry data to provide an en face high-
resolution map of estimated retinal sensitivity.

Methods

Image Acquisition
The study population consisted of participants of the Natural History Observation and Registration
study of MacTel. The study protocol has been published.20 Optical coherence tomographic scans
were performed (Spectralis OCT; Heidelberg Engineering) with a volume scan of 97 B-scans.7

Microperimetry, which is not part of the standard study protocol, was performed (MAIA; Centervue)
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using standard grids from the manufacturers as well as a customized testing pattern with a dense
central grid with each stimuli 1.5° apart.

The study was reviewed and approved by the regional ethics committees (Ethikkommission der
Universität Bonn, Germany, and Health Research Authority Bromley, United Kingdom) and was in
adherence to the tenets of the Declaration of Helsinki.21 Written informed consent was obtained
from each participant. Images were obtained between January 1, 2016, and November 30, 2017, and
analyzed between December 1, 2017, and August 15, 2018. Participants did not receive financial
compensation. This study followed the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guideline.

Image Processing
The microperimetry results were exported as raw files. Using Adobe Photoshop CS5 12.0 (Adobe
Systems Inc), the MAIA infrared scanning laser ophthalmoscope images were superimposed with the
Spectralis infrared scanning laser ophthalmoscope images from the volume scan. Retinal vessels
were used as landmarks. The image size was changed with constrained proportions and the image
was rotated until the vessels were superimposed as closely as possible. No other image distortions
were performed.

Spectralis OCT B-scans were selected to intersect the center of each MAIA stimulus. The stimuli
intersected by the B-scan were superimposed onto the B-scan aligning their horizontal location on
this scan. The resulting B-scan was exported as a .png file with and without superimposing MAIA
stimuli. The scans above and below this reference scan were also saved, without a MAIA stimulus.

As described previously,11 we created vertical slices of 32 × 496-pixel windows around each
perimetry point and used the slice above and below the registered B-scan as additional examples. No
other image preprocessing was performed before input into the deep-learning model. No
overlapping vertical OCT windows were created to establish the validation and test sets.

Deep-Learning Approach
Our model is implemented as a deep convolutional neural network with a regression output. To
perform regression, a localized vertical slice of the OCT was used as input into the neural network,
and the output from the model was set to the microperimetry-measured retinal sensitivity at that
location as a continuous variable. By setting the anatomic structure as an input and an objective
functional measurement as output, we hoped to create a neural network that could estimate
function from structure directly de novo. At inference time, the trained network would provide an en
face projection of a high-resolution map of estimated retinal sensitivity.

The network architecture is schematically shown in Figure 1A. We used a modified version of
the Visual Geometry Group (VGG) 16 convolutional neural network.22 The input image is passed
through a stack of 3 VGG blocks followed by 2 fully connected layers. The VGG blocks consists of 128,
256, and 256 convolution layers. For better generalization, dropout units were applied to every
convolution layer except the last one, with a ratio of 0.1, and each of the fully connected layers with a
ratio of 0.5. The total model size was 49.9 million variables.

Weights were initialized using the Xavier algorithm.23 The model was trained with mean
squared error loss function using Adam optimizer. We chose a batch size of 64. The learning rate was
initially set to 1 × 10−5, and decay over each update was set to initial learning ratio divided by epochs.
All inputs were normalized to a range between 0 and 1, and outputs were normalized to −1 to 1. We
assessed the performance of neural network using cross validation with the validation set and
evaluated the generalizability with an independent data set. Samples were divided into training sets
at 60%, validation sets at 20%, and test sets at 20%. The training, validation, and test sets contained
images from mutually exclusive groups of patients (ie, no single patient contributed images to >1 set).

To reduce overfitting on image data, we used data augmentation that consisted of generating
image translations, rotations, and horizontal reflections. For translations and rotations, we first
identified an approximate position of membrane using Canny edge detector24 together with median
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filter, and vertically shifted and/or rotated the image within an acceptable range. To verify how our
deep-learning algorithm predicted the sensitivity, we used Activation Map 25 to find spatial support
regions for the prediction. Keras26 and Python27 were used for deep learning. All training occurred
using the NVIDIA Pascal Titan X Graphics processing unit with NVIDIA cuda, version 8.0, and cu-dnn,
version 5.5.1, libraries.28

Statistical Analysis
All statistical analyses were performed using R, version 3.5.1. The statistical significance level was .05,
and 2-tailed paired, nonparametric testing was performed.

Figure 1. Deep-Learning Model Structure and Learning Curves
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A, Schematic of deep-learning model using a total of
49.9 million variables in 7 convolutional (CN) and 2
fully connected (FC) layers with rectified linear unit
(ReLU) activation. The first number after CN refers to
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Results

Network Architecture
The depth of feature maps for each layer was set to 128 in the first block and 256 at the second and
third blocks. Lowering the depth of feature maps as 64, 128, and 256 in VGG caused the network to
perform worse at evaluation time, and additional depth beyond 256 did not yield further
improvements. Making the feature map in the first block deeper did not improve the model
performance. Shallower networks, such as LeNet,29 caused underfitting of data, and deeper
networks, such as VGG16, resulted in overfitting owing to a limited amount of available
training images.

Training, Validation, and Test Results
A total of 2499 microperimetry retinal sensitivities were registered to 1708 OCT B-scans from 63
eyes of 38 patients (mean [SD] age, 74.3 years; 15 men [39.5%]). For training, the number of
examples available was 67 899 (103 053 after data augmentation); for validation, 1695; and for
testing, 1212. After 80 510 iterations per 50 epochs of training, the validation loss stabilized
(Figure 1B). The training loss was larger than the validation loss in the first 4 or 5 epochs because the
training set included augmented images, which were not included in the validation set. We achieved
a mean absolute error of 1.70 dB for training, 3.02 dB for validation, and 3.83 dB for the test set. The
model achieved 3.36 dB (95% CI, 3.25-3.48 dB) for the validation and test set. The mean difference
determined by Bland-Altman plot was −1.99 dB (95% CI, −9.0 to 5.12 dB) (Figure 2).

Estimation of Retinal Sensitivity
The estimated sensitivity values were used to create high-resolution en face OCT projection maps of
estimated retinal sensitivity (Figure 3). After manual registration of the microperimetry to the OCT
volume (Figure 3A), the model created an estimate for each vertical line of a B-scan resulting in dense
estimation lines for each B scan (Figure 3B). In the next step, those lines were stitched together to
en face OCT projection maps (Figure 3C). Our model successfully delineated regions of normal
against reduced retinal sensitivities. Figure 3D shows examples of activation map outputs, giving
visual explanations from our regression model for which regions on the B scans were important for
estimates.

We explored the possibility of applying our method to analyze progression of vision loss in
patients with MacTel. For this purpose, we processed OCT volume scans taken approximately 12

Figure 2. Comparison of Observed vs Estimated Retinal Sensitivity
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months apart (Figure 4). The areas of low retinal sensitivities correlated with each other in location
and shape and showed a growth over time that was in keeping with previous studies of natural
scotoma progression.2,8

We compared our model with linear regression and LeNet as baseline models. We trained these
models using the same data set and optimization method that we used for our model. Mean absolute
error results of these models were 4.51 dB (95% CI, 4.36-4.65 dB) when using linear regression and
3.66 dB (95% CI, 3.53-3.78 dB) when using LeNet. Using a 49.9 million–variable deep-learning model,
a mean absolute error of 3.36 dB (95% CI, 3.25-3.48 dB) of retinal sensitivity for validation and test
was achieved. Correlation showed a high degree of agreement (Pearson correlation r = 0.78). By
paired Wilcoxon rank sum test, our model significantly outperformed these 2 baseline models
(P < .001) (Figure 5).

Figure 3. Microperimetry Results and Predicted High-Resolution Sensitivity Maps
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Discussion

One of the hallmarks of MacTel is the structural and functional restriction of disease to a specific
macular area.1,30 Functional loss arises as a sharply delineated scotoma that progresses over time
until it reaches a maximum within the MacTel area.2,31 This spatial and functional limitation is not only
ideal for microperimetry, but also proved to be adaptable to our model, as both diseased and healthy
retinal areas are found in the same OCT B-scans, thus offering internal controls. The available sample
had a strong left skew with fewer samples of low than high sensitivity scores, affecting the ability of
the model to estimate lower sensitivities. Therefore, the variance of deviation between estimated
and tested sensitivity was higher for lower tested sensitivities, which might be the reason the
estimated areas of functional loss look homogeneous (Figure 3C and Figure 4). However, this

Figure 4. Estimated Progression of Retinal Sensitivity Loss From Longitudinal Optical Coherence Tomographic Scans in 3 Patients With a Follow-up Time of 12 Months
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monitoring.
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deviation was small enough to allow for correct identification of the sharp borders of functional loss
and reliably discern healthy from diseased retina (Figure 3B and C).

Microperimetry can be demanding for both patients and examiners. It requires not only time (a
correctly performed examination can take 30 minutes for 2 eyes) and intense concentration, but

Figure 5. Comparison With Baseline Estimation Models
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also skilled and motivated examiners and patients, increasing the costs of this method and limiting its
use to special cases or questions and selected patient groups. By contrast, an OCT scan requires
much less time and minimal patient cooperation. High-quality scans can be obtained in children,
adults with disability, and a wide variety of ocular conditions, even with poor visual acuity or poor
fixation on a test target. Our approach has the potential of creating dense en face maps of estimated
retinal sensitivity, as the OCT scan can cover the retina densely (10-μm interscan distances and
widefield scans are commercially available). This high-resolution estimated perimetry map
overcomes the natural limitation of every perimetry examination, which can sample only limited
areas of the retina; the spatial resolution of the test points, which are limited owing to imprecision of
eye tracking and stimulus projections; and the inherent trade-off of an increase in examination
duration with lessened patient cooperation for each added test location. These high-resolution maps
make the model potentially useful for measuring disease progression (Figure 4); any structural
change on OCT scans will be readily translated into functional change by the model.

Several cross-sectional and longitudinal studies have shown a good correlation between retinal
function and structure in MacTel, as seen on OCT.8,9,32,33 Because those studies only examined the
ellipsoid zone (EZ), there might be a potential bias at the expense of other retinal structures that
might be functionally more relevant than the EZ, for example, the outer nuclear layer. The model had
no human input other than the retinal sensitivity at each microperimetry location, and was therefore
unbiased as to which structure to look at on the OCT. The most important structures identified on
the activation maps for retinal function were identified within the outer retina in MacTel. The model
was able to positively estimate healthy retinal function based on the presence of intact outer retinal
layers, in particular, the EZ.

The activation maps provided a close approximation of the en face zones of EZ loss derived
from the OCT scans (Figure 3C). Loss of EZ has been recently approved by the US Food and Drug
Administration as a primary outcome measure in investigational trials in MacTel (ClinicalTrials.gov
identifiers NCT01949324, NCT03316300, and NCT03319849), justified by its correlation to retinal
sensitivity measured with microperimetry. Therefore, our model could also be validated and then
applied for measurements of surrogate measures in clinical trials of MacTel, as well as another way of
monitoring disease progression, because it also takes into account other functionally relevant retinal
structures.

Deepening the feature map in the first block did not improve our model performance. High-
level structural information captured at a higher layer (second and third blocks of the network) is
likely more important for the network to estimate retinal sensitivity than local feature, such as
corners and edges captured at the lower layer (first block of the network).

Will this method obviate the need for microperimetry? Such a reliable and validated
psychophysical method should not be abolished: retinal function is more meaningful to patients and
clinicians than the subtle changes on their retinal scans. Trials are criticized for the use of surrogate
end points as markers of therapeutic success; better end points are available. However, many clinics
do not have a microperimetry device, whereas OCTs are available almost everywhere. Many patients
are unable to perform demanding microperimetry scanning (children, elderly, or disabled patients)
and are therefore excluded from clinical trial protocols. Some retinal diseases with wide areas of
macular dysfunction are excluded from treatment protocols owing to the lack of a meaningful
functional outcome. This model could broaden the inclusion criteria for some of these trials. We
chose to focus on MacTel in this proof-of-principle study as a paradigmatic macular disease adaptable
to the application of microperimetry owing to the focal and limited nature of its functional loss and
anatomic changes.

Limitations
Although the findings offer the potential to train the model using other more common diseases, such
as age-related macular degeneration and diabetic retinopathy, our proof-of-principle study has
limitations. This study was based on 1 disease and the findings might not necessarily generalize to all
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retinal diseases. The precision of the model may improve with additional microperimetry
examinations and estimation of the microperimetry from the OCT. Prior work with deep learning and
MacTel has created fully automated and reliable approaches for binary segmentation of the EZ band
on OCT B-scans.19 Our approach differs in that we used a functional measurement as the objective
training target without selecting an anatomic feature beforehand.

Future studies could include using dense raster OCT volumes and 3-dimensional convolutions
to further increase the model’s accuracy. In addition, with higher-resolution microperimetry testing,
U-net style architectures may be used to build deep-learning models for mapping structural OCT to
retinal sensitivities.

Conclusions

We have developed high-resolution en face standard maps of estimated retinal sensitivities with
direct relevance to standard microperimetry techniques in eyes with MacTel. The estimates were
reliable and fast, and produced similar information compared with microperimetry, correctly
delineating functionally healthy and impaired retina. In addition, retinal sensitivity in areas between
the test points could be implied from the model. As a proof of principle, we plan to apply this model
to other diseases. We believe the model may be useful to monitor structural and functional disease
progression and has potential as a surrogate outcome measure in investigational treatment trials.
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